Finite-Time Blow-up in a Two-Species Chemotaxis-Competition Model with Degenerate Diffusion

نویسندگان

چکیده

This paper is concerned with the two-species chemotaxis-competition model degenerate diffusion, $$ \textstyle\begin{cases} u_{t} = \Delta u^{m_{1}} - \chi _{1} \nabla \cdot (u\nabla w) + \mu u (1-u-a_{1}v), &x\in \Omega ,\ t>0, \\ v_{t} v^{m_{2}} _{2} (v\nabla v (1-a_{2}u-v), 0 w +u+v-\overline{M}(t), \end{cases} $\int _{\Omega }w(x,t)\,dx=0$ , $t>0$ where $\Omega := B_{R}(0) \subset \mathbb{R}^{n}$ $(n\ge 5)$ a ball some $R>0$ ; $m_{1},m_{2}>1$ $\chi _{1},\chi _{2},\mu _{1},\mu _{2},a_{1},a_{2}>0$ $\overline{M}(t)$ spatial average of $u+v$ . In this paper, we show that if m_{1}< 2-\frac{4}{n}, \quad _{1}>\frac{n(2-m_{1})}{n(2-m_{1})-4} \max \{ 1,a_{1} \}\mu \text{and} _{2}>\mu _{2}a_{2} or m_{2}< _{1}>\mu _{1}a_{1}\quad _{2}>\frac{n(2-m_{2})}{n(2-m_{2})-4}\cdot 1,a_{2} _{2}, then there exist radially symmetric initial data such weak solution blows up in finite time sense $\widetilde{T}_{\mathrm{max}}\in (0,\infty )$ \limsup _{t \nearrow \widetilde{T}_{\mathrm{max}}}\, (\|u(t)\|_{L^{\infty }( )} \|v(t)\|_{L^{\infty }(\Omega )})=\infty To obtain result, apply method previous (Discrete Contin. Dyn. Syst., Ser. B 28(1):262–286, 2023) to derive an integral inequality for moment-type functional, which was introduced by Winkler (Z. Angew. Math. Phys. 69(2):69, 2018). Moreover, before proving blow-up solutions above model, give result on finite-time under same conditions $m_{1}$ $m_{2}$ _{1}$ and _{2}$ terms $\Delta u^{m_{1}}$ v^{m_{2}}$ replaced nondegenerate diffusion (u+{\varepsilon })^{m_{1}}$ (v+{\varepsilon })^{m_{2}}$ ${\varepsilon }\in (0,1]$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-time Blow-up in a Degenerate Chemotaxis System with Flux Limitation

This paper is concerned with radially symmetric solutions of the parabolic-elliptic version of the Keller-Segel system with flux limitation, as given by ( ) ⎧⎨ ⎩ ut = ∇ · ( u∇u √ u2 + |∇u|2 ) − χ∇ · ( u∇v √ 1 + |∇v|2 ) ,

متن کامل

Blow-up dynamics for the aggregation equation with degenerate diffusion

We study radially symmetric finite time blow-up dynamics for the aggregation equation with degenerate diffusion ut = ∆u m − ∇ · (u ∗ ∇(K ∗ u)) in R, where the kernel K(x) is of power-law form |x|−γ . Depending on m, d, γ and the initial data, the solution exhibits three kinds of blow-up behavior: self-similar with no mass concentrated at the core, imploding shock solution and near-self-similar ...

متن کامل

A chemotaxis model with threshold density and degenerate diffusion

A quasilinear degenerate parabolic system modelling the chemotactic movement of cells is studied. The system under consideration has a similar structure as the classical Keller-Segel model, but with the following features: there is a threshold value which the density of cells cannot exceed and the flux of cells vanishes when the density of cells reaches this threshold value. Existence and uniqu...

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Finite volume methods for degenerate chemotaxis model

A finite volume method for solving the degenerate chemotaxis model is presented, along with numerical examples. This model consists of a degenerate parabolic convection– diffusion PDE for the density of the cell-population coupled to a parabolic PDE for the chemoattractant concentration. It is shown that discrete solutions exist, and the scheme converges.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Applicandae Mathematicae

سال: 2023

ISSN: ['1572-9036', '0167-8019']

DOI: https://doi.org/10.1007/s10440-023-00592-4